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ABSTRACT 
 

This paper presents the FPGA implementation of a Decimal Floating Point (DFP) arithmetic unit. The design 

performs addition, subtraction and multiplication on 64-bit operands that use the IEEE 754-2008 DPD encoding of 

DFP numbers. The design uses an equal bypass adder, this adder reduces the power consumption and it also reduces 

the delay by reducing the gate count. The design also uses barrel shifter instead of sequential shifter to reduce delay. 

Also 64 bit parallel BCD multiplier is used to perform fixed point multiplication. The proposed DFP arithmetic unit 

supports operations on the decimal64 format and it is easily extendable for the decimal128 format.  

Keywords : Floating point addition, Floating point multiplication, Floating point subtraction, FPGA, Delay, Area 

overhead, IEEE P754-2008 

 

I. INTRODUCTION 

 

The binary floating point (BFP) arithmetic has certain 

flaws namely; it cannot provide correct decimal 

rounding and cannot precisely represent some decimal 

fractions such as 0.001, 0.0475 etc [1]. There are many 

applications where a precision is required such as 

billing, insurance, currency conversion, banking and 

some scientific applications. European Union requires 

that currency conversion to and from EURO is to be 

calculated to six decimal digits [2]. One study estimates 

that errors generating from BFP arithmetic can sum up 

to a yearly billing of over dollar 5 million for a large 

billing organization [3]. Therefore decimal floating point 

(DFP) arithmetic becomes very important in many 

current and future applications as it has ability to 

represent decimal fractions precisely. DFP arithmetic 

also has the ability to provide correct decimal rounding 

that will mimic the manual rounding. 

 

Applications which cannot tolerate errors generating 

from BFP arithmetic, these application use software 

platforms to perform DFP arithmetic [1]. There are 

many software packages which are available for 

example: the java BigDecimal library [5] and IBM‟s 

decNumber library [4]. Also Intel published results for a 

decimal arithmetic library which uses Binary integer 

decimal (BID) encoding. These software packages are 

good enough for current applications, but trends towards 

globalization and e-commerce are increasing, so faster 

response of these systems is required. Software designs 

to these systems may be inadequate with the increasing 

performance demands of future systems. So hardware 

implementation of these systems is the need of the hour. 

 

In 2008, the IEEE 754-1985 floating point standard has 

been revised and the new standard called the IEEE 754-

2008 floating point standard was setup [6], which 

includes specifications for DFP formats, encoding and 

operations. The IEEE 754-2008 standard includes an 

encoding format for DFP numbers in which the 

significand and the exponent (and the payloads of NaNs) 

can be encoded in two ways namely; binary encoding 

and decimal encoding. [7] 

 

Both the encoding formats break a number into a sign bit 

s, an exponent E, and a p-digit significand c. The value 

encoded is (−1)
s
 × 10

E
 × c. In both formats the range of 

possible values is identical, but the significand c is 

encoded differently. In the decimal encoding, it is 

encoded as a series of p decimal digits using the densely 

packed decimal encoding (DPD). In the binary encoding 

also known as binary integer decimal (BID) encoding, it 

is encoded as a binary number.  
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In this paper a floating point arithmetic unit is proposed. 

This floating point arithmetic unit is IEEE P754 – 2008 

complaint and based on densely packed decimal (DPD) 

encoding for DFP arithmetic. The proposed floating 

point arithmetic unit uses low power equal bypass adder 

to reduce the power consumption of the design. A 

parallel 64 bit (16 x 16 digits) BCD multiplier is used to 

reduce delay. 

 

II. METHODS AND MATERIAL 

 

A. Decimal Floating Point Representation 

In IEEE 754-2008, the value of a finite DFP number 

with an integer significand is 

V = (−1)
s
 × 10

q
 × c 

where „S‟ is the sign, „q‟ is the unbiased exponent, and 

„C‟ is the significand. The precision or the length of the 

significand is denoted as „p‟, which is equal to 7, l6, or 

34 digits, for decimal32, decimal64, or decimall28, 

respectively. Figure 1 shows the double precision 

decimal64 Decimal Floating Point format. 

 

 

Figure 1: Decimal 64 – Decimal floating point format DPD 

encoded  

 

The l-bit Sign Field, S indicates the sign of a number. 

The (w+5)-bit Combination Field, G provides the most 

significand digit (MSD) of the significand and a non-

negative biased exponent, E such that E = q + bias. The 

exponent is almost always encoded in binary. The G 

Field also indicates special values, such as Not-a-

Number (NaN) and infinity (00). The remaining digits of 

the significand are specified in the t-bit Trailing 

Significand Field, T. Table 1 shows the combination 

field. 

Table 1: Combination Field 

Number 

type 

Combination 

field 

Exponents 

Bits 

Significand 

MSD 

finite a b c d e a b 0 c d e 

finite 11 a b c a b 1 0 0 e 

infinite 1 1 1 1 0 . . . . . . 

NaN 1 1 1 1 1 . . . . . . 
 

 

B. Decimal Floating Point Arithmetic Unit 

Decimal floating point arithmetic unit performs three 

operations on IEEE P754-2008 decimal64 numbers 

namely, addition, subtraction and multiplication. 

Addition and subtraction operation on floating point 

operands are accomplished using a combined 

adder/subtractor unit, whereas multiplication on floating 

point unit is performed using a separate multiplication 

unit. Figure 2 shows the high level block diagram of 

floating point arithmetic unit. 

 

Figure 2 : High Level Block diagram – Floating point Unit 

 

The inputs to the decoder block are two 64 bit IEEE 

P754-2008 floating point numbers encoded in DPD 

namely “Apkt” and “Bpkt”. Sign (As, Bs), exponent (Ae, 

Be) and mantissa (Am, Bm) information is extracted from 

two input packets by first converting the input 

information in DPD and then DPD is converted to BCD. 

After the decoding process the exponent (Ae, Be) and 

Mantissa (Am, Bm) are BCD numbers. 

An operation selection block is used to determine the 

correct operation, when the 2 bit “operation” input is 

“00” then the selected operation is floating point 

addition and output of FPA/S (Floating point 

adder/subtractor) is assigned to the encoder block, when 

the operation input is “01” then the selected operation is 

floating point subtraction and also in this case output of 

FPA/S is assigned to encoder, when the operation input 

is “10” then the selected operation is multiplication and 

Sign 

(S) 

Combination (w + 5) 

(G) 

Trailing Significand 

(C) 

1 Bit 13 bits 50 bits 
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output of FPM (Floating point multiplier) is assigned to 

encoder block and when operation input is “11” then no 

operation is selected and output “Opkt” becomes 0. 

FPA/S and FPM blocks are used to perform floating 

point addition/subtraction and floating point 

multiplication respectively. These blocks are explained 

in section 4 and section 5 respectively. An encoder block 

is used to encode the sign, exponent and mantissa of 

output to IEEE P754-2008 decimal64 format. The 

encoder block first converts the BCD exponent and 

mantissa into DPD and then convert the DPD numbers 

to decimal64 format. 

C. Decimal Floating Point Adder/Subtractor 

Figure 3 explains the algorithm for adding two decimal 

floating point numbers encoded in DPD dec64 format. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3: Floating Point Addition - Algorithm 

Figure 4 shows the floating point adder architecture for 

decimal floating point number system. The decoder 

generates mantissa (Am,Bm), exponent(Ae,Be) and sign 

(As,Bs). 

 

The XOR gate determines the effective operation (EOP) 

by xoring the two signs (As, Bs). If eop signal is zero 

then the effective operation is addition and if the eop 

signal is 1 then the effective operation is subtraction. 

This eop signal is assigned to the BCD adder/subtractor 

unit. 

A comparator unit is used to identify the larger of two 

numbers, if Ae > Be then swap signal is assigned to 0, 

and if Ae < Be, then swap signal is assigned to 1. Also 

the two exponents Ae and Be is subtracted and assigned 

to RSA (right shift amount) signal. 

 

Swapping logic is used to assign the larger to the L 

channel and the smaller number to the S channel. When 

Swap signal is 0 then number A is larger than B, so Lm 

is assigned with Am, Le is assigned with Ae and Ls is 

assigned with As. Similarly so Sm is assigned with Bm, 

Se is assigned with Be and Ss is assigned with Bs. And 

if swap signal is 0 then B is greater than A and hence L 

channel is assigned with B and S channel is assigned 

with A. 

 

Now the smaller mantissa Sm is shifted right using a low 

delay barrel shifter, the right shifting amount is 

determined by RSA signal generated in comparator unit. 

The output is Srsm(small right shifted mantissa). 

 

Next the two mantissas Srsm and Lm are operated. The 

operation is determined by eop signal generated earlier 

using XOR gate. The two mantissas are 

added/subtracted using 17 digit BCD adder/subtractor. 

Here a low power low delay full adder circuit is used to 

implement a BCD adder/subtractor to reduce the power 

consumption and delay of the design. 

 

Figure 5 shows the 4 bit BCD adder, this BCD adder 

uses two 4 bit ripple carry adder, these 4 bit ripple carry 

adder uses conventional full adder.    

 

Figure 6 shows the conventional full adder. All the logic 

gates in this design are applied with inputs all the time 

and this consumes power at all times, also the gate count 

for sum is two and the gate count for carry is three. We 

are replacing the conventional full adder by equal 

bypassing full adder. Figure 7 shows the low power low 

delay equal bypassed full adder.  

 

In this full adder when input „A‟ and input „B‟ are equal 

then the output of XOR gate is „0‟, this makes the 

control input of tri-state buffer „0‟, now the output of tri-

state inverter is high impedance „Z‟, this blocks one 

channel of the multiplexer and reduces the power 

consumption. And if the two inputs „A‟ and „B‟ are 

different then the output of the XOR gate is „1‟ and 

control input of tri-state inverter is also „1‟, the input „C‟ 

Step 1: Decode the inputs A and B to obtain  

                (As,AE,Am) and (Bs,BE,Bm)  

Step 2: Determine effective operation (EOP) 

            EOP <= As XOR Bs;  

           EOP = 0  Addition  

           EOP = 1  Subtract  

Step 3: if Ae < Be, then Swap A and B 

Step 4: Calculate d <= Ae – Be 

Step 5: Shift right ‘Bm’ by d 

Step 6: Add ‘d’ to ‘Be’ 

Step 7: Compute Zc <= Am ± Bm  (Depends on 

EOP) 

Step 8: Ze <= Ae  

Step 9: Zs <= Sign(greater(A,B)) 

Step 10: Encode to IEEE P754-2008 decimal64 

format 
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is complemented. Also at all times the gate count of 

Cout is reduces to 1, this is 2 less than the conventional 

full adder. So the power consumption and delay of the 

BCD adder is reduced. 

 

 

 

Figure 4: Floating Point Adder / Subtractor architecture 

The rounding logic unit truncates the 17 digit mantissa 

generated by the BCD adder/subtractor to 16 digit 

mantissa Rm. 

 

The exponent calculation unit generates the output 

exponent. The large exponent Le is assigned to the result 

exponent Re if truncation is not needed, if the output 

mantissa is truncated then the resultant exponent is 

added with 1. 

 

The sign calculation unit generates the output sign. The 

sign of greater number is assigned to the resultant sign 

Rs. Here the sign of greater number is Ls. The three 

information Rm, Re and Rs are applied to the encoder 

block for encoding it to decimal64 number. 

 
Figure 5: BCD Adder 

 
 

Figure 6: Conventional Full Adder 
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Figure 7 : Low Power – Low Delay Full Adder  

 

D. Floating Point Multiplier 

Figure 8 depicts the basic algorithm for floating 

point multiplication.  

 

Figure 8 : Floating Point Multiplication - Algorithm  

Figure 9 shows the architecture of floating point 

multiplier. 

 

Figure 9 :  Floating Point Multiplication - 

Architecture  

The sign (As, Bs), exponent (Ae, Be) and mantissa 

(Am, Bm) information is extracted from the 

decimal64 number in decoder unit. This 

information along with the a clk (not shown in 

figure) is used in floating point multiplier to 

generate the result R. 

 

First the two sign bits As and Bs are XORED to 

generate the result sign bit Rs. The exponent is 

generated by adding the two input exponents Ae 

and Be. The input exponents are biased and hence 

the result of the addition is further subtracted with 

the bias value. In decimal64 format the bias value is 

398. So the result exponent is calculated as: 

 

Re = Ae + Be – bias 

 

Parallel to the sign and exponent calculation, the 

product is generated by multiplying the two 

mantissas Am and Bm. This multiplication is 

accomplished by a 16 digit parallel BCD multiplier. 

 

Figure 10 represents an area optimized BCD digit 

multiplier. This multiplier produces the result of 

multiplication in binary and we need a binary to 

BCD converter shown in figure 11.The B is the 

higher nibble of the multiplication and C is the 

lower nibble of multiplication. Figure 12 shows the 

parallel multiplication process of a 4 x 4 BCD 

multiplier. Xi and yi are single digit BCD numbers. 

These numbers are multiplied using the single digit 

BCD multiplier shown in figure 10-11. pyixiH and 

pyixiL are higher and lower nibble of multiplication 

respectively.  

 

 

Figure 12: 4 x 4 BCD Multiplication process 

    x3 x2 x1 x0 
    y3 y2 y1 y0 
    P0003L P0002L P0001L p0000L 

   P0003H P0002H P0001H P0000H  

   P0103L P0102L P0101L P0100L  

  P0103H P0102H P0101H P0100H   

  P0203L P0202L P0201L P0200L   

 P0203H P0202H P0201H P0200H    

 P0303L P0302L P0301L P0300L    

P0303H P0302H P0301H P0300H     

P7 P6 P5 P4 P3 P2 P1 P0 

1. Extract As, Ae, Am, Bs, Be,Bm by decoding the 

incoming packets. 

2. Rs <= As XOR Bs 

3. Re <= Ae + Be – bias 

4. Product <= Am * Bm 

5. Truncate product to generate 16 digit 

mantissa Rm  

6. Generate appropriate flags InF, NaN, Zero, 

OF, UF. 

7. Encode to output result format.  
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Figure 13 depicts the 4 x 4 multiplier architecture to 

implement the algorithm shown figure12.  In the 

process of floating point multiplication this 4x4 

multiplier is extended to implement 16 x 16 

multiplier. The multiplication is the critical 

operation the design of floating point arithmetic 

unit and hence in order to reduce we have used a 

parallel BCD multiplier.  

 

The result of the 16 x 16 BCD multiplier is a 32 

digit BCD mantissa. But Decimal64 only supports 

16 digit of mantissa. so a rounding logic unit is 

incorporated to round off the least significant digits 

and adjust the exponent accordingly. The rounding 

unit generated the 16 digit mantissa Rm. Now the 

sign Rs, exponent Re and mantissa Rm are assigned 

to the encoder unit.       

 

 

Figure 10 : Area optimized BCD digit multiplier 

 

Figure 11 : Binary Product to BCD Converter 
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III. RESULTS AND DISCUSSION 

 

All logics were described in VHDL. The design has 

been implemented on Xilinx Virtex-5 device XC-

5VLX30FF324-3. Resource utilization is shown in 

table 1. As seen from table 1 that the critical 

module of the design is the FPM (floating point 

multiplier) with large resource usage and delay. The 

maximum operating frequency of the floating point 

arithmetic unit is 45.935 MHz.  

 

Table 1: Device Utilization Summary 

Module Slice Registers Slice LUT’s Delay 

Decoder 4 138 4.04ns 

FPA/S 5 652 45.39ns 

FPM - 15895 81.96ns 

Encoder 109 72 - 

Arithmetic 

unit 
274 16778 - 

Table 2 shows the power consumption summary of 

floating point arithmetic unit. Dynamic power 

depends mainly on the clock rate and hence it is 

increasing with clock frequency. The power 

consumption at maximum operating frequency 

(MOF) is 634mW. 

Table 2: Power Consumption 

S.no Frequency Static Dynamic Total 
1 20 Mhz 380 mw 115 mw 495mw 

2 30 Mhz 381 mw 168 mw 549mw 

3 40 Mhz 382 mw 220 mw 602mw 

4 45.9 Mhz 

(MOF) 

382 mw 252 mw 634mw 

 

IV. CONCLUSION 

 
In this work implementation of IEEE P754-2008 

decimal floating point arithmetic unit is accomplished. 

The advantage of decimal floating point arithmetic over 

binary floating point arithmetic is that decimal floating 

point representation does not has errors with binary 

floating point arithmetic like rounding error, arithmetic 

error and errors associated when representing fraction 

decimal numbers.    

 

The arithmetic unit performs three operations, floating 

point addition, floating point subtraction and floating 

point multiplication. A combined floating addition and 

subtraction unit is used in the design; the combined 

floating point adder/subtractor unit uses a low power 

low delay full adder to implement the BCD 

adder/subtractor. The floating point multiplication unit 

uses a parallel 16 x 16 BCD multiplier. Parallel 

multiplier is opted because of its low delay compared to 

serial multiplier. It is observed from table 1 and table 2 

that the 16 x16 BCD digit multiplier is most critical 

module of the design, its takes the most resources and 

has the maximum delay. In future we can improve the 

performance of the design by optimizing the 16 x 16 

BCD digit multiplier.     
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