
IJSRSET151678 | Received: 20 December 2015 | Accepted: 26 December 2015 | November-December 2015 [(1)6: 340-347]

© 2015 IJSRSET | Volume 1 | Issue 6 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

340

Implementation of Optimized Floating Point Arithmetic Unit on
Reconfigurable Logic

Sonam Pardhi, Nitesh Dodkey

Department of Electronics and Communication Engineering, Surbhi group of Institute, Madhya Pradesh, India

ABSTRACT

This paper presents the FPGA implementation of a Decimal Floating Point (DFP) arithmetic unit. The design

performs addition, subtraction and multiplication on 64-bit operands that use the IEEE 754-2008 DPD encoding of

DFP numbers. The design uses an equal bypass adder, this adder reduces the power consumption and it also reduces

the delay by reducing the gate count. The design also uses barrel shifter instead of sequential shifter to reduce delay.

Also 64 bit parallel BCD multiplier is used to perform fixed point multiplication. The proposed DFP arithmetic unit

supports operations on the decimal64 format and it is easily extendable for the decimal128 format.

Keywords : Floating point addition, Floating point multiplication, Floating point subtraction, FPGA, Delay, Area

overhead, IEEE P754-2008

I. INTRODUCTION

The binary floating point (BFP) arithmetic has certain

flaws namely; it cannot provide correct decimal

rounding and cannot precisely represent some decimal

fractions such as 0.001, 0.0475 etc [1]. There are many

applications where a precision is required such as

billing, insurance, currency conversion, banking and

some scientific applications. European Union requires

that currency conversion to and from EURO is to be

calculated to six decimal digits [2]. One study estimates

that errors generating from BFP arithmetic can sum up

to a yearly billing of over dollar 5 million for a large

billing organization [3]. Therefore decimal floating point

(DFP) arithmetic becomes very important in many

current and future applications as it has ability to

represent decimal fractions precisely. DFP arithmetic

also has the ability to provide correct decimal rounding

that will mimic the manual rounding.

Applications which cannot tolerate errors generating

from BFP arithmetic, these application use software

platforms to perform DFP arithmetic [1]. There are

many software packages which are available for

example: the java BigDecimal library [5] and IBM‟s

decNumber library [4]. Also Intel published results for a

decimal arithmetic library which uses Binary integer

decimal (BID) encoding. These software packages are

good enough for current applications, but trends towards

globalization and e-commerce are increasing, so faster

response of these systems is required. Software designs

to these systems may be inadequate with the increasing

performance demands of future systems. So hardware

implementation of these systems is the need of the hour.

In 2008, the IEEE 754-1985 floating point standard has

been revised and the new standard called the IEEE 754-

2008 floating point standard was setup [6], which

includes specifications for DFP formats, encoding and

operations. The IEEE 754-2008 standard includes an

encoding format for DFP numbers in which the

significand and the exponent (and the payloads of NaNs)

can be encoded in two ways namely; binary encoding

and decimal encoding. [7]

Both the encoding formats break a number into a sign bit

s, an exponent E, and a p-digit significand c. The value

encoded is (−1)
s
 × 10

E
 × c. In both formats the range of

possible values is identical, but the significand c is

encoded differently. In the decimal encoding, it is

encoded as a series of p decimal digits using the densely

packed decimal encoding (DPD). In the binary encoding

also known as binary integer decimal (BID) encoding, it

is encoded as a binary number.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

341

In this paper a floating point arithmetic unit is proposed.

This floating point arithmetic unit is IEEE P754 – 2008

complaint and based on densely packed decimal (DPD)

encoding for DFP arithmetic. The proposed floating

point arithmetic unit uses low power equal bypass adder

to reduce the power consumption of the design. A

parallel 64 bit (16 x 16 digits) BCD multiplier is used to

reduce delay.

II. METHODS AND MATERIAL

A. Decimal Floating Point Representation

In IEEE 754-2008, the value of a finite DFP number

with an integer significand is

V = (−1)
s
 × 10

q
 × c

where „S‟ is the sign, „q‟ is the unbiased exponent, and

„C‟ is the significand. The precision or the length of the

significand is denoted as „p‟, which is equal to 7, l6, or

34 digits, for decimal32, decimal64, or decimall28,

respectively. Figure 1 shows the double precision

decimal64 Decimal Floating Point format.

Figure 1: Decimal 64 – Decimal floating point format DPD

encoded

The l-bit Sign Field, S indicates the sign of a number.

The (w+5)-bit Combination Field, G provides the most

significand digit (MSD) of the significand and a non-

negative biased exponent, E such that E = q + bias. The

exponent is almost always encoded in binary. The G

Field also indicates special values, such as Not-a-

Number (NaN) and infinity (00). The remaining digits of

the significand are specified in the t-bit Trailing

Significand Field, T. Table 1 shows the combination

field.

Table 1: Combination Field

Number

type

Combination

field

Exponents

Bits

Significand

MSD

finite a b c d e a b 0 c d e

finite 11 a b c a b 1 0 0 e

infinite 1 1 1 1 0

NaN 1 1 1 1 1

B. Decimal Floating Point Arithmetic Unit

Decimal floating point arithmetic unit performs three

operations on IEEE P754-2008 decimal64 numbers

namely, addition, subtraction and multiplication.

Addition and subtraction operation on floating point

operands are accomplished using a combined

adder/subtractor unit, whereas multiplication on floating

point unit is performed using a separate multiplication

unit. Figure 2 shows the high level block diagram of

floating point arithmetic unit.

Figure 2 : High Level Block diagram – Floating point Unit

The inputs to the decoder block are two 64 bit IEEE

P754-2008 floating point numbers encoded in DPD

namely “Apkt” and “Bpkt”. Sign (As, Bs), exponent (Ae,

Be) and mantissa (Am, Bm) information is extracted from

two input packets by first converting the input

information in DPD and then DPD is converted to BCD.

After the decoding process the exponent (Ae, Be) and

Mantissa (Am, Bm) are BCD numbers.

An operation selection block is used to determine the

correct operation, when the 2 bit “operation” input is

“00” then the selected operation is floating point

addition and output of FPA/S (Floating point

adder/subtractor) is assigned to the encoder block, when

the operation input is “01” then the selected operation is

floating point subtraction and also in this case output of

FPA/S is assigned to encoder, when the operation input

is “10” then the selected operation is multiplication and

Sign

(S)

Combination (w + 5)

(G)

Trailing Significand

(C)

1 Bit 13 bits 50 bits

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

342

output of FPM (Floating point multiplier) is assigned to

encoder block and when operation input is “11” then no

operation is selected and output “Opkt” becomes 0.

FPA/S and FPM blocks are used to perform floating

point addition/subtraction and floating point

multiplication respectively. These blocks are explained

in section 4 and section 5 respectively. An encoder block

is used to encode the sign, exponent and mantissa of

output to IEEE P754-2008 decimal64 format. The

encoder block first converts the BCD exponent and

mantissa into DPD and then convert the DPD numbers

to decimal64 format.

C. Decimal Floating Point Adder/Subtractor

Figure 3 explains the algorithm for adding two decimal

floating point numbers encoded in DPD dec64 format.

Figure 3: Floating Point Addition - Algorithm

Figure 4 shows the floating point adder architecture for

decimal floating point number system. The decoder

generates mantissa (Am,Bm), exponent(Ae,Be) and sign

(As,Bs).

The XOR gate determines the effective operation (EOP)

by xoring the two signs (As, Bs). If eop signal is zero

then the effective operation is addition and if the eop

signal is 1 then the effective operation is subtraction.

This eop signal is assigned to the BCD adder/subtractor

unit.

A comparator unit is used to identify the larger of two

numbers, if Ae > Be then swap signal is assigned to 0,

and if Ae < Be, then swap signal is assigned to 1. Also

the two exponents Ae and Be is subtracted and assigned

to RSA (right shift amount) signal.

Swapping logic is used to assign the larger to the L

channel and the smaller number to the S channel. When

Swap signal is 0 then number A is larger than B, so Lm

is assigned with Am, Le is assigned with Ae and Ls is

assigned with As. Similarly so Sm is assigned with Bm,

Se is assigned with Be and Ss is assigned with Bs. And

if swap signal is 0 then B is greater than A and hence L

channel is assigned with B and S channel is assigned

with A.

Now the smaller mantissa Sm is shifted right using a low

delay barrel shifter, the right shifting amount is

determined by RSA signal generated in comparator unit.

The output is Srsm(small right shifted mantissa).

Next the two mantissas Srsm and Lm are operated. The

operation is determined by eop signal generated earlier

using XOR gate. The two mantissas are

added/subtracted using 17 digit BCD adder/subtractor.

Here a low power low delay full adder circuit is used to

implement a BCD adder/subtractor to reduce the power

consumption and delay of the design.

Figure 5 shows the 4 bit BCD adder, this BCD adder

uses two 4 bit ripple carry adder, these 4 bit ripple carry

adder uses conventional full adder.

Figure 6 shows the conventional full adder. All the logic

gates in this design are applied with inputs all the time

and this consumes power at all times, also the gate count

for sum is two and the gate count for carry is three. We

are replacing the conventional full adder by equal

bypassing full adder. Figure 7 shows the low power low

delay equal bypassed full adder.

In this full adder when input „A‟ and input „B‟ are equal

then the output of XOR gate is „0‟, this makes the

control input of tri-state buffer „0‟, now the output of tri-

state inverter is high impedance „Z‟, this blocks one

channel of the multiplexer and reduces the power

consumption. And if the two inputs „A‟ and „B‟ are

different then the output of the XOR gate is „1‟ and

control input of tri-state inverter is also „1‟, the input „C‟

Step 1: Decode the inputs A and B to obtain

 (As,AE,Am) and (Bs,BE,Bm)

Step 2: Determine effective operation (EOP)

 EOP <= As XOR Bs;

 EOP = 0  Addition

 EOP = 1  Subtract

Step 3: if Ae < Be, then Swap A and B

Step 4: Calculate d <= Ae – Be

Step 5: Shift right ‘Bm’ by d

Step 6: Add ‘d’ to ‘Be’

Step 7: Compute Zc <= Am ± Bm (Depends on

EOP)

Step 8: Ze <= Ae

Step 9: Zs <= Sign(greater(A,B))

Step 10: Encode to IEEE P754-2008 decimal64

format

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

343

is complemented. Also at all times the gate count of

Cout is reduces to 1, this is 2 less than the conventional

full adder. So the power consumption and delay of the

BCD adder is reduced.

Figure 4: Floating Point Adder / Subtractor architecture

The rounding logic unit truncates the 17 digit mantissa

generated by the BCD adder/subtractor to 16 digit

mantissa Rm.

The exponent calculation unit generates the output

exponent. The large exponent Le is assigned to the result

exponent Re if truncation is not needed, if the output

mantissa is truncated then the resultant exponent is

added with 1.

The sign calculation unit generates the output sign. The

sign of greater number is assigned to the resultant sign

Rs. Here the sign of greater number is Ls. The three

information Rm, Re and Rs are applied to the encoder

block for encoding it to decimal64 number.

Figure 5: BCD Adder

Figure 6: Conventional Full Adder

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

344

Figure 7 : Low Power – Low Delay Full Adder

D. Floating Point Multiplier

Figure 8 depicts the basic algorithm for floating

point multiplication.

Figure 8 : Floating Point Multiplication - Algorithm

Figure 9 shows the architecture of floating point

multiplier.

Figure 9 : Floating Point Multiplication -

Architecture

The sign (As, Bs), exponent (Ae, Be) and mantissa

(Am, Bm) information is extracted from the

decimal64 number in decoder unit. This

information along with the a clk (not shown in

figure) is used in floating point multiplier to

generate the result R.

First the two sign bits As and Bs are XORED to

generate the result sign bit Rs. The exponent is

generated by adding the two input exponents Ae

and Be. The input exponents are biased and hence

the result of the addition is further subtracted with

the bias value. In decimal64 format the bias value is

398. So the result exponent is calculated as:

Re = Ae + Be – bias

Parallel to the sign and exponent calculation, the

product is generated by multiplying the two

mantissas Am and Bm. This multiplication is

accomplished by a 16 digit parallel BCD multiplier.

Figure 10 represents an area optimized BCD digit

multiplier. This multiplier produces the result of

multiplication in binary and we need a binary to

BCD converter shown in figure 11.The B is the

higher nibble of the multiplication and C is the

lower nibble of multiplication. Figure 12 shows the

parallel multiplication process of a 4 x 4 BCD

multiplier. Xi and yi are single digit BCD numbers.

These numbers are multiplied using the single digit

BCD multiplier shown in figure 10-11. pyixiH and

pyixiL are higher and lower nibble of multiplication

respectively.

Figure 12: 4 x 4 BCD Multiplication process

 x3 x2 x1 x0
 y3 y2 y1 y0
 P0003L P0002L P0001L p0000L

 P0003H P0002H P0001H P0000H

 P0103L P0102L P0101L P0100L

 P0103H P0102H P0101H P0100H

 P0203L P0202L P0201L P0200L

 P0203H P0202H P0201H P0200H

 P0303L P0302L P0301L P0300L

P0303H P0302H P0301H P0300H

P7 P6 P5 P4 P3 P2 P1 P0

1. Extract As, Ae, Am, Bs, Be,Bm by decoding the

incoming packets.

2. Rs <= As XOR Bs

3. Re <= Ae + Be – bias

4. Product <= Am * Bm

5. Truncate product to generate 16 digit

mantissa Rm

6. Generate appropriate flags InF, NaN, Zero,

OF, UF.

7. Encode to output result format.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

345

Figure 13 depicts the 4 x 4 multiplier architecture to

implement the algorithm shown figure12. In the

process of floating point multiplication this 4x4

multiplier is extended to implement 16 x 16

multiplier. The multiplication is the critical

operation the design of floating point arithmetic

unit and hence in order to reduce we have used a

parallel BCD multiplier.

The result of the 16 x 16 BCD multiplier is a 32

digit BCD mantissa. But Decimal64 only supports

16 digit of mantissa. so a rounding logic unit is

incorporated to round off the least significant digits

and adjust the exponent accordingly. The rounding

unit generated the 16 digit mantissa Rm. Now the

sign Rs, exponent Re and mantissa Rm are assigned

to the encoder unit.

Figure 10 : Area optimized BCD digit multiplier

Figure 11 : Binary Product to BCD Converter

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

346

III. RESULTS AND DISCUSSION

All logics were described in VHDL. The design has

been implemented on Xilinx Virtex-5 device XC-

5VLX30FF324-3. Resource utilization is shown in

table 1. As seen from table 1 that the critical

module of the design is the FPM (floating point

multiplier) with large resource usage and delay. The

maximum operating frequency of the floating point

arithmetic unit is 45.935 MHz.

Table 1: Device Utilization Summary

Module Slice Registers Slice LUT’s Delay

Decoder 4 138 4.04ns

FPA/S 5 652 45.39ns

FPM - 15895 81.96ns

Encoder 109 72 -

Arithmetic

unit
274 16778 -

Table 2 shows the power consumption summary of

floating point arithmetic unit. Dynamic power

depends mainly on the clock rate and hence it is

increasing with clock frequency. The power

consumption at maximum operating frequency

(MOF) is 634mW.

Table 2: Power Consumption

S.no Frequency Static Dynamic Total
1 20 Mhz 380 mw 115 mw 495mw

2 30 Mhz 381 mw 168 mw 549mw

3 40 Mhz 382 mw 220 mw 602mw

4 45.9 Mhz

(MOF)

382 mw 252 mw 634mw

IV. CONCLUSION

In this work implementation of IEEE P754-2008

decimal floating point arithmetic unit is accomplished.

The advantage of decimal floating point arithmetic over

binary floating point arithmetic is that decimal floating

point representation does not has errors with binary

floating point arithmetic like rounding error, arithmetic

error and errors associated when representing fraction

decimal numbers.

The arithmetic unit performs three operations, floating

point addition, floating point subtraction and floating

point multiplication. A combined floating addition and

subtraction unit is used in the design; the combined

floating point adder/subtractor unit uses a low power

low delay full adder to implement the BCD

adder/subtractor. The floating point multiplication unit

uses a parallel 16 x 16 BCD multiplier. Parallel

multiplier is opted because of its low delay compared to

serial multiplier. It is observed from table 1 and table 2

that the 16 x16 BCD digit multiplier is most critical

module of the design, its takes the most resources and

has the maximum delay. In future we can improve the

performance of the design by optimizing the 16 x 16

BCD digit multiplier.

V. REFERENCES

[1]. M. F. Cowlishaw, “Decimal Floating-Point:

Algorism for Computers,” Proc. IEEE 16th Symp.

Computer Arithmetic, pp. 104-111, 2003.

[2]. IBM Corporation, The „Telco‟ benchmark,

http://speleotrove.com/ Decimal/telcoSpec.html,

2005.

[3]. D.-G. for Economic and F. A. C. from the

Commission to the European Council, “Review

of the Introduction of Euro Notes and Coins,”

EURO PAPERS, Apr. 2002.

[4]. M.F. Cowlishaw The decNumber library, v3.68.

IBM, http://speleotrove.-

com/decimal/decnumber.pdf, 2013.

[5]. S. Microsystems BigDecimal Class, Java 2

Platform Standard ed. 5.0,

APISpecification,http://docs.oracle.com/javase/1.5

.0/docs/api/java/math/BigDecimal.html, 2013.

[6]. M. Cornea, C. Anderson, J. Harrison, P.T.P. Tang,

E. Schneider, and C. Tsen, “A Software

Implementation of the IEEE 754R Decimal

Floating-Point Arithmetic Using the Binary

Encoding Format,” Proc. IEEE 18
th
 Symp.

[7]. ANSI/IEEE 754-1985, “Standard for Binary

Floating-Point Arithmetic”.

[8]. R. K. Yu, G.B. Zyner, 167 MHz radix-4 floating

point multiplier, Proceedings 12th Symposium on

Computer Arithmetic, 1995, pp. 149-154.

[9]. C. Gamez, R. Pang, Apparatus and method for

rounding operands, U.S. patent 5258943, 1993.

[10]. M. Saishi, T. Minemaru, Multiplication circuit

having rounding function, U.S. patent 5500812,

1996.

[11]. Guy Even, Silvia M. Mueller, Peter-Michael

Seidel “A dual precision IEEE Floating-point

multiplier” Elsevier INTEGRATION, the VLSI

journal 29 (2000) 167-180.

http://speleotrove.com/

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

347

[12]. C. Tsen, M.J. Schulte, and S.G. Navarro,

“Hardware Design of a Binary Integer Decimal

Based IEEE P754 Rounding Unit,” Proc. IEEE

18th Int‟l Conf. Application-Specific Systems,

Architectures and Processors, pp. 115-121, 2007.

[13]. B.J. Hickmann, A. Krioukov, M.J. Schulte, and

M.A. Erle, “A Parallel IEEE P754 Decimal

Floating-Point Multiplier,” Proc. IEEE 25th Int‟l

Conf. Computer Design, 2007.

[14]. C. Tsen, S.G. Navarro, M.J. Schulte, B.

Hickmann, and K. Compton, “A Combined

Decimal and Binary Floating-Point Multiplier,”

Proc. IEEE 20
th
 Int‟l Conf. Application-Specific

Systems, Architectures, and Processors, pp. 8-15,

2009.

[15]. J. Di and J. S. Yuan, “Power-aware pipelined

multiplier design based on 2-dimensional pipeline

gating,” in 13th Great Lakes Symposium on VLSI.

ACM, 2003, pp. 64–67.

[16]. Sunjoo Hong, Taehwan Roh and Hoi-Jun Yoo, “a

145w 8×8 parallel multiplier based on optimized

bypassing architecture”, department of electrical

engineering, Korea advanced institute of science

and technology (KAIST), Daejeon, Republic of

Korea, IEEE, pp.1175-1178, 2011.

[17]. Yin-Tsung Hwang, Jin-Fa Lin, Ming-Hwa Sheu

and Chia-Jen Sheu, “low power multipliers using

enhenced row bypassing schemes”, department of

electronic engineering, National Yunlin University

of science & technology, Touliu, Yunlin, Taiwan,

IEEE, pp.136-140, 2007.

[18]. George Economakos, Dimitris Bekiaris and

Kiamal Pekmestzi, “a mixed style architecture for

low power multipliers based on a bypass

technique”, national technical University of

Athens, school of electrical and computer

engineering, heroon polytechniou 9, GR-15780

Athens, Greece, IEEE, pp.4-6, 2010.

[19]. Meng-Lin Hsia and Oscal T.-C. Chen, “low power

multiplier optimized by partial-product summation

and adder cells”, dept. of electrical engineering,

national chung cheng University, chia-yi, 621,

Taiwan, IEEE, pp.3042-3045, 2009. [12] P. C. H.

Meier, “analysis and design of low power digital

multipliers”, Ph.D. thesis, Carnegie Mellon

University, dept. of electrical and computer

engineering, Pittsburgh, Pennsylvania, 1999.

[20]. Carlos Minchola, Martin Vazquez and Gustavo

Sutter “A FPGA IEEE 754 2008 decimal floating

point adder subtractor” 2011 IEEE.

[21]. Yanyu Ding, Deming Wang, Jianguo Hu and

Hongzhou Tan, “A Low power Parallel Multiplier

Based on Optimized-Equal-Bypassing-

Technique”, Third International Conference on

Information Science and Technology March, 2013

IEEE, China

